vorticity source - Definition. Was ist vorticity source
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist vorticity source - definition

Vorticity Equation; Vorticity transport equation

Source Vagabond Systems         
TRAVEL EQUIPMENT STORE
SOURCE (Outdoor & Tactical Gear)
Source Vagabond Systems Ltd. (brand: SOURCE) is known in the outdoor, trekking and sports market for sandals, hydration systems, packs and accessories and in the tactical market for hydration systems, packs, and its SOURCE Virtus Soldier System.
Vorticity equation         
The vorticity equation of fluid dynamics describes the evolution of the vorticity of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid (in terms of vector calculus this is the curl of the flow velocity). The governing equation is:
Voltage source         
ELECTRICAL ELEMENT WHICH MAINTAINS A FIXED VOLTAGE ACROSS ITS TWO TERMINALS, REGARDLESS OF CURRENT
Rubber zener; Ideal voltage source; Controlled voltage source; Constant-voltage power supply; Dependent voltage source; Constant voltage source
A voltage source is a two-terminal device which can maintain a fixed voltage.An introduction to electronics An ideal voltage source can maintain the fixed voltage independent of the load resistance or the output current.

Wikipedia

Vorticity equation

The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid (in terms of vector calculus this is the curl of the flow velocity). The governing equation is:

where D/Dt is the material derivative operator, u is the flow velocity, ρ is the local fluid density, p is the local pressure, τ is the viscous stress tensor and B represents the sum of the external body forces. The first source term on the right hand side represents vortex stretching.

The equation is valid in the absence of any concentrated torques and line forces for a compressible, Newtonian fluid. In the case of incompressible flow (i.e., low Mach number) and isotropic fluids, with conservative body forces, the equation simplifies to the vorticity transport equation:

D ω D t = ( ω ) u + ν 2 ω {\displaystyle {\frac {D{\boldsymbol {\omega }}}{Dt}}=\left({\boldsymbol {\omega }}\cdot \nabla \right)\mathbf {u} +\nu \nabla ^{2}{\boldsymbol {\omega }}}

where ν is the kinematic viscosity and 2 {\displaystyle \nabla ^{2}} is the Laplace operator. Under the further assumption of two-dimensional flow, the equation simplifies to:

D ω D t = ν 2 ω {\displaystyle {\frac {D{\boldsymbol {\omega }}}{Dt}}=\nu \nabla ^{2}{\boldsymbol {\omega }}}